Внимание!

На сайте публикуются материалы,
которые могут представлять опасность нарушения психического и физического здоровья, без соответствующего обучения под руководством опытного учителя.

Авторы не несут ответственности, в случае использования публикуемых технологий без соответствующей сонастройки и обучения.



Назад    

СВЯТОЙ ГРААЛЬ БИОФИЗИКИ ( Автор : М.А.ШКРОБ кандидат биологических наук )
 
   
 

 

ОпытХерши и Чейз, показавший, что именно ДНК - носитель генетической информации

Темы дня:
  Обнаружен еще один Иерусалим
  Ученые: жизнь на Марсе, вероятно, все еще существует
  Два архетипа в психологии человечества
  Тайны Марианской впадины откроют путь к запасам нефти и газа
  Испанские ученые нашли простой способ сохранения ясного ума
  Реактивный двигатель Сталина
  Итальянский физик выяснил, куда "течет" время


На рисунке: опыт Херши и Чейз, показавший, что именно ДНК— носитель генетической информации. Слева бактериофаги, белки которых несут радиоактивную метку, справа — бактериофаги с радиоактивно помеченной ДНК. Бактериофаг садится на поверхность клетки и впрыскивает свою ДНК. Затем бактерии отделяют от среды, содержащей белковые оболочки фагов. Радиаиця остается в клетке, если меченой была ДНК, или в среде, если меченым был белок

Уильям Рокфеллер по прозвищу Большой Билл, отец основателя клана Рокфеллеров, был известен по всей стране. Начинал он свой творческий путь как конокрад, но интерес к медицине и некоторая беспринципность позволили ему быстро найти куда более выгодный бизнес. Билл провозгласил себя выдающимся специалистом в области лечения рака и гарантировал всем, купившим его снадобье, исцеление от болезни «в любых случаях, кроме тех, что уже слишком далеко зашли». Бутылочку лекарства, состоявшего преимущественно из нефти, можно было купить за 25 долларов, что по тем временам превышало два средних месячных заработка.

Одни биографы полагают, что потомки Большого Билла унаследовали интерес к медицине, другие — что они уяснили, сколько можно на ней заработать, третьи — что Рокфеллеры мучились угрызениями совести из-за предка-шарлатана. Как бы то ни было, в начале XX века ими был основан Рокфеллеровский фонд, деятельность которого сыграла важную роль в зарождении молекулярной биологии. Фонд не только финансировал научные работы, но и дал европейским ученым возможность эмигрировать в США в годы Второй мировой войны и продолжать там свои исследования.

В 1930 году грант Рокфеллеровского фонда позволил молодому немецкому физику Максу Дельбрюку на время переехать в Копенгаген, чтобы работать в лаборатории, возглавляемой Нильсом Бором. Личное общение с Бором и его лекция «Свет и жизнь» оказали на Дельбрюка сильнейшее воздействие. Согласно идеям Бора, неспособность биологов понять суть жизни кроется в том, что два их классических подхода — наблюдение и разрушение — являются взаимоисключающими. Он считал, что в биологии будет найден парадокс, схожий с тем, с которым столкнулись физики при изучении света, когда для получения цельной картины им пришлось признать верными два противоречащих друг другу подхода — волновой и корпускулярный.

Как писал выдающийся физик и мемуарист Абрахам Пайс, «обращение Дельбрюка в биологи было величайшим вкладом Нильса Бора в биологию». Услышанное на лекции настолько потрясло Дельбрюка, что он решил оставить теоретическую физику и приступить к поиску парадоксов в живых системах сразу по возвращении в Берлин. Там и началось его сотрудничество с Николаем Владимировичем Тимофеевым-Ресовским и Карлом Циммером, результатом которого стала одна из самых важных публикаций в истории молекулярной биологии. Их совместная деятельность оказалась примером удачного использования в биологии идеологических подходов, позаимствованных из других наук, в данном случае из ядерной физики. Подобно тому как размеры ядер, слишком маленьких для непосредственного измерения, удается определить, бомбардируя их частицами различной массы и размера, Дельбрюк предложил определить размер генов дрозофилы, подвергая их воздействию радиации и отслеживая мутации. Работа была великолепно спланирована, тщательно выполнена и аккуратно обсчитана. Понятная и близкая физикам по духу, она стала широко известна за пределами круга биологов, в особенности после того, как Шредингер повторил ее основные идеи в своей книге «Что такое жизнь с точки зрения физика?». Многие физики восприняли эту книгу как откровение, для многих она послужила толчком к смене рода деятельности. Это было одно из знаковых событий, открывших дорогу физикам в биологию и физическим подходам и методам в область исследования живых систем.

Американская фаговая церковь

Публикация статьи способствовала получению Дельбрюком второго гранта Рокфеллеровского фонда в 1937 году. Он использует этот шанс, чтобы покинуть Германию, события в которой начинают приобретать опасный оборот, и отправиться в Калифорнийский технологический институт — в лабораторию нобелевского лауреата генетика Томаса Моргана. Дельбрюк был в высшей степени заинтересован исследованиями Моргана, однако быстро разочаровался в объекте исследований — дрозофиле. Он счел дрозофилу совершенно неподходящей моделью: принципы квантовой механики были открыты тогда, когда материю стали изучать на элементарном уровне, значит, и в биологии требуется сначала найти самую простую систему. Дрозофила, очевидно, такой системой не являлась. Нужна была какая-то очень простая система, и, по счастью, именно такая система оказалась у Дельбрюка прямо под боком. В том же отделе работал Эмори Эллис, который изучал вирусы бактерий — бактериофаги (от греч. «поедатели бактерий»), часто именуемые для краткости просто фагами. Дельбрюк немедленно заинтересовался бактериофагами и вскоре познакомился с двумя единомышленниками, Сальвадором Лурией и Альфредом Херши.

Лурия окончил медицинскую школу и занимался радиологией в лаборатории Энрико Ферми до тех пор, пока Италия не начала открыто поддерживать фашистскую Германию. Он переехал в Париж, где попал в лабораторию, занимавшуюся исследованием воздействия радиации на бактериофаги. В июне 1940 года, буквально за два дня до оккупации Парижа, Лурии удалось на велосипеде выехать из города; он отправился в Марсель и затем в Нью-Йорк. К тому времени Ферми уже работал в Америке. Он и посоветовал Лурии подать заявку на грант Рокфеллеровского фонда, что тот и сделал. Дельбрюк и Лурия познакомились на конференции в декабре 1940 года. Лурия прекрасно знал работу Дельбрюка, первое прочтение которой он охарактеризовал как «встречу со святым Граалем биофизики». Ученые сразу сошлись в интересах и в стиле работы и приступили к совместным опытам буквально через несколько часов после знакомства. Коллеги также поговаривали, что некую роль в их быстром сближении сыграло то, что оба они эмигрировали из стран-противников, что отдаляло от них ученых-американцев.

Вскоре происходит еще одна историческая встреча. Макс Дельбрюк знакомится с Альфредом Херши, американским биохимиком, исследователем бактериофагов. «Предпочитает чаю виски. Прямолинейный, по существу. Любит месяцами жить на лодке. Любит независимость», — сообщил Дельбрюк о Херши в письме к Лурии.

Сотрудничество физика Дельбрюка, врача Лурии и биохимика Херши, каждый из которых привнес в работу свой опыт и свое видение биологии, оказалось невероятно плодотворным. Дельбрюк, Лурия и Херши стали ядром так называемой американской фаговой группы — ученых, выбравших бактериофаги в качестве инструмента исследования и модельного объекта. Андре Львов, выдающийся французский микробиолог, называл эту группу «Американской фаговой церковью». Франк Сталь так развил эту тему: «Во главе фаговой церкви стояла троица — Дельбрюк, Лурия и Херши. Статус основоположника и манера ex cathedra, вне всяких сомнений, делали Дельбрюка Папой, Лурия был усердным, социально чутким священником-исповедником. А Ал (Херши) был святым».

Это был невероятно удачный выбор, хотя вряд ли можно говорить здесь о случайной удаче, решение об использовании фагов было принято совершенно сознательно. Почему же именно фаги были выбраны в качестве модели и что они вообще собой представляют? Остановимся на них подробнее.

Целительные воды Ганга

В 1935 году на территории Института экспериментальной медицины РАМН был открыт памятник собаке как дань благодарности за вклад этого животного в физиологию. С сожалением стоит отметить, что бактериофаг — объект, давший молекулярной биологии не меньше, объект, на котором были открыты и изучены самые фундаментальные принципы этой науки, не только не получил положенных почестей, но и вообще неизвестен широкой публике.

Первое косвенное свидетельство существования бактериофагов получил англичанин Эрнест Ханкин, который в 1896 году написал о целебных свойствах вод Ганга. Это в наши дни содержание фекальных колиморфных бактерий в Ганге в 120 раз превышает предельно допустимое даже для купания количество, а в 1896 году воду из Ганга пили, чтобы излечиться от холеры. Ханкин выяснил, что подобный метод лечения имеет все основания: вода действительно обладала антибактериальными свойствами, сохранявшимися после фильтрации, но пропадающими после кипячения. К тому моменту вирусы, микроскопические патогены, обладающие в точности теми же свойствами, которые описал Ханкин, были уже известны, однако ученый не высказал никаких предположений относительно вирусной природы открытого им эффекта. Поэтому открывателями бактериофагов принято считать англичанина Фредерика Творта и канадца Феликса д\'Эрреля. Биография последнего могла бы послужить темой для романа. Вот краткое перечисление видов деятельности, которыми он занимался до открытия бактериофагов: работа медиком (без соответствующего образования) в геологической экспедиции, разработка способов получения шнапса из кленового сиропа в Канаде и виски из бананов в Гватемале, инвестиции в шоколадную фабрику, работа над истреблением саранчи с помощью бактерий в Мексике и Аргентине.

Творт открыл фаги на два года раньше д\'Эрреля — в 1915 году, когда обнаружил в сплошном слое бактерий «остекленевшие» участки, где все бактерии умерли. Он показал, что смертоносный агент проходит через все фильтры и что для его роста необходимы бактерии. Д\'Эррель независимо провел очень схожий эксперимент в 1917 году. И Творт, и д\'Эррель поняли, что открытые ими агенты могут быть взяты на вооружение в борьбе с вредными бактериями, но лишь опыты д\'Эрреля в этом направлении увенчались успехом. В начале 1919 году ему удалось выделить из куриного помета бактериофаги, активные в отношении куриного тифа. А уже через полгода д\'Эррель испробовал фаги на людях и вылечил с их помощью больного дизентерией.

Работы д\'Эрреля привлекли всеобщее внимание. На момент их публикации не прошло и десяти лет с открытия сальварсана — лекарства от сифилиса, начавшего новую эпоху в медицине. Это был первый за всю историю человечества препарат направленного действия, «волшебная пуля». Идея волшебной пули может показаться тривиальной: узнать, в чем причина болезни, а потом найти лекарство, чтобы устранить ее. Как бы просто это ни звучало в теории, на практике первый специфический в отношении возбудителя препарат появился только в 1908 году ценой невероятных усилий лаборатории Пауля Эрлиха. (Второе название сальварсана — препарат 606, то есть это было 606-е синтезированное и испробованное соединение. Первым же соединением, которое обладало хоть какой-нибудь активностью, был препарат 418.) Множество ученых занялись поиском «волшебных пуль», и бактериофаги как убийцы бактерий выглядели прекрасными кандидатами на эту роль.

На фаги были возложены большие надежды по спасению человечества от всех бактериальных инфекций. С 1919 по 1956 год было выпущено около 800 научных публикаций, по-священных использованию фагов в терапии. Наиболее выдающихся успехов в этой области добились советские ученые в Институте исследования бактериофагов, который был открыт в 1923 году в Тбилиси. Его возглавил блестящий ученый Георгий Элиава. В 1934 году Элиава пригласил д\'Эрре-ля в свой институт, и тот с радостью принял предложение и переехал работать в Грузию, где написал книгу о бактериофагах, которую посвятил Сталину. В 1937 году, когда Элиава был репрессирован и убит, д\'Эррель поспешил вернуться во Францию. К счастью, исследования в основанном Элиавой институте продолжались: в нем было создано большое количество противовоспалительных препаратов, спасших множество жизней в годы Великой Отечественной войны.

В других странах также начались исследования лечебных свойств фагов. Фаги успешно применялись для лечения тифа, дизентерии, инфекций мочевых путей и холеры. Их вводили внутривенно, подкожно, с помощью клизмы, втирали и распрыскивали, вкалывали внутрь брюшины, легких, перикарда. Если так можно выразиться, успех фаговой терапии был даже слишком велик. Интерес к новому лекарству стали проявлять предприниматели и не очень щепетильные врачи. Препараты готовились с грубейшими нарушениями технологии, неправильно хранились, вводились не туда, куда надо, и не в том количестве. И конечно, никакой речи о клинических испытаниях в то время не шло (вспомните хотя бы самого д\'Эрреля, проделавшего путь от куриного помета до испытаний на людях всего за полгода). В конце концов, в 1931 году был опубликован доклад Американской медицинской ассоциации, обобщавший взлеты и падения в области фаговой терапии. Критических замечаний, содержавшихся в докладе, оказалось достаточно для полного прекращению финансирования исследований в данной области. Кроме того, в 1928 году был открыт пенициллин, и взгляды врачей и предпринимателей повернулись в сторону антибиотиков.

Медицина стремительно охладела к фагам, по крайней мере, в Европе и США; напомним, что в Советском Союзе исследования продолжались. (О современных достижениях в области фаготерапии «Химия и жизнь» писала в № 3 за 2002 год.) А в фундаментальной науке эпоха бактериофагов еще только начиналась.

Чистые гены

Чтобы понять, как на молекулярном уровне устроены гены, как происходит наследование генетической информации, требовалась простая и удобная модель. Самый популярный на тот момент объект исследований — дрозофила, — как уже было сказано, не вполне отвечал этим критериям. Существовавших методов было явно недостаточно для работы с многоклеточным организмом, обладающим огромным количеством признаков. Фаги же, напротив, будто специально для этого и созданы.

Дельбрюк как-то назвал фаги «чистыми генами». И это недалеко от истины: в среднем примерно половина веса вирусной частицы приходится на ДНК. Существуют просто и сложно устроенные бактериофаги. Простые фаги могут иметь форму нитей или многогранников, сложные же представляют собой подобие шприца. При заражении бактерии вирус садится на ее поверхность и впрыскивает внутрь свой генетический материал. Некоторое время после этого с клеткой не происходит никаких видимых изменений, однако внутри нее бушуют страсти. Все производственные мощности бактерии начинают служить размножению вируса, и спустя 10-15 минут бактериальная клетка лопается, выпуская наружу тысячи новых вирусных частиц, готовых тут же поразить новую мишень. Можете посчитать, во сколько раз такая система эффективней, чем дрозофила. Ее личинка выходит из яйца через сутки после оплодотворения, через пять дней окукливается, и только еще через пять дней на свет появляется взрослая особь, которой нужно 12 часов, чтобы достигнуть половой зрелости.

Итак, фаги быстро размножаются, занимают мало места, безвредны для исследователей и, что крайне важно, позволяют проводить количественные исследования. Если ровным слоем высеять суспензию бактерий, содержащих бактериофаг, на чашку со средой, то количество вирусов в суспензии можно легко определить по числу видимых глазом проплешин в слое бактерий. Число проплешин — по сути, единственный признак, за которым можно следить. Это еще одно выгодное отличие бактериофагов от дрозофилы с ее множеством признаков, сложным образом связанных между собой.

На такой, согласитесь, несложной системе было, ни много ни мало, доказано, что именно ДНК — носитель генетической информации. Это сделали в 1952 году Альфред Хер-ши и Марта Чейз.

Схема эксперимента была следующая: исследователи вырастили две группы бактерий, одну — в среде, содержащей изотоп фосфора Р32, а вторую — в среде, содержащей S35. Поскольку в аминокислотах, из которых состоят белки, не содержится фосфора, а в ДНК, в свою очередь, нет серы, то получалось, что в одних бактериях оказывались радиоактивно помечены только белки, а в других — только ДНК. Бактерии заразили фагами и получили на выходе две группы фагов, с мечеными белками или с меченой ДНК. Этими фагами затем инфицировали обычные бактерии, не содержащие метки. Оказалось, что внутрь таких бактерий попадет только радиоактивный фосфор. Это говорило о том, что именно ДНК проникает внутрь клетки, а значит, именно ДНК содержит всю информацию, необходимую для воспроизведения. Красивый эксперимент Херши и Чейз положил конец спорам о том, где находятся гены, в ДНК или белке, за год до открытия Джеймсом Уотсоном и Фрэнсисом Криком двойной спирали.

В 1943 году Лурия и Дельбрюк доказали, что мутации возникают в геноме бактерий спонтанно, то есть являются случайными и не обязательно увеличивают приспособленность к условиям окружающей среды. Они обнаружили, что с какой-то вероятностью бактерии могут приобретать устойчивость к заражению бактериофагом. Вероятность такого события невелика, но мы помним: и фаги, и бактерии очень эффективно размножаются, что дает возможность исследовать даже редкие события. Идея эксперимента пришла Лурии в голову, когда он наблюдал, как его друг убивает время за игральным аппаратом. Друг раз за разом проигрывал, и Лурия начал было над ним посмеиваться, как вдруг тот выиграл джек-пот. Ученый подумал, что, хотя мы и знаем примерно, с какой частотой выпадает джек-пот, точный момент предсказать невозможно. Так и с бактериями: если мутации, защищающие от бактериофага, происходят случайно, то устойчивые бактерии должны появляться через непредсказуемые интервалы. Если же мутации происходят направленно, то устойчивые бактерии будут появляться через равные промежутки времени. Экспериментальные данные подтвердили верность первого варианта. Важность открытия Пурин и Дельбрюка заключалась прежде всего в том, что они доказали: дарвиновские принципы верны и в отношение бактерий, а значит, эти объекты, куда более удобные в работе, чем многоклеточные организмы, могут быть использованы в качестве модели в генетике.

Из пространного эмпиризма в точную науку

Вы вряд ли удивитесь, если узнаете, что бактерией, использованной в перечисленных выше экспериментах, была кишечная палочка (Escherichia coli). Еще бы, ведь Е. coli — стандартный модельный организм, самая популярная у исследователей бактерия. Но не надо путать причину со следствием: во многом именно потому Е. coli и стала модельным организмом, что с ней работала «фаговая церковь». В 1944 году Дельбрюк призвал всех исследователей бактериофагов придерживаться так называемого фагового пакта — использовать в работе один определенный штамм Е. coli и один из семи штаммов бактериофагов, названных Т с номером от 1 до 7. Призыв был услышан. Работы Дельбрюка, Лурии и Хер-ши привлекали внимание все новых и новых ученых, и практически все их последователи начинали с использования той же самой системы, что позволило воспроизводить и сравнивать между собой данные, полученные в разных лабораториях. Этот факт был особо отмечен при вручении этим троим ученым Нобелевской премии в 1969 году. Профессор Свен Гад упомянул личную заслугу Дельбрюка в превращении исследований бактериофагов из «пространного эмпиризма в точную науку». Единая модель, количественный анализ, тщательная статистическая обработка результатов, недоверие ко всем предшественникам — микробиологам и биохимикам — такова была идеология «фаговой группы», доказавшая свою успешность.

Слова Свена Гада экспрессивно, но в целом справедливо характеризуют качественный скачок в биологических исследованиях, который произошел в 40—50-х годах во многом благодаря личным заслугам Дельбрюка. Херши так охарактеризовал тот период: «Будучи знакомыми с двумя феноменами А и В, мы планировали эксперимент, в котором мы могли бы использовать В для того, чтобы изучить А. Часто такие попытки проваливались, потому что мы находили новый феномен С, о котором до этого не подозревали. Так выглядела история изучения бактериофагов с начала 40-х годов. Невозможно было провести эксперимент, не отвлекаясь на открытия». И открытия действительно совершались одно за другим. С использованием бактериофагов Сеймур Бензер, один из физиков, пришедших в биологию после прочтения книги Шредингера, о которой шла речь выше, доказал, что последовательность гена коллинеарна с аминокислотной последовательностью кодируемого им белка. Чарльз Яновски доказал, что мутации приводят к изменению аминокислотной последовательности. Френсис Крик и Сидней Бреннер показали, что каждая аминокислота кодируется именно тремя нуклеотидами и что существует сигнал остановки синтеза белка, также кодируемый тремя нуклеотидами. Все перечисленные работы были выполнены на бактериофаге Т4, более того, на одном конкретном участке его генома — локусе rll (второй участок, отвечающий за быстрое, rapid, разрушение бактерий).

Систему rll T4 Бензер разрабатывал почти десять лет. Он получил около 1600 вариантов фагаТ4 с различными мутациями в локусе rll. Все мутанты класса rll обладали одной интересной особенностью: они могли размножаться в бактериях E.coli штамма В, но не в бактериях штамма К. Фаги же дикого типа (rll+) могли размножаться и там, и там. Бензер выяснил, что с некоторой частотой при одновременном заражении бактерии двумя фагами между их ДНК возможна рекомбинация, то есть обмен участками. При этом может получиться новый мутант, способный, как и rll+, заражать бактерии штамма К. Если рекомбинация произошла, то на чашке, засеянной E.coli К, можно будет увидеть бляшки — участки, в которых вирус активно размножался и убил все бактерии. Имея в наличии 1600 мутантов, Бензер проанализировал частоту рекомбинации между ними, что позволило ему определить взаимное отношение всех точек мутации и составить карту локуса rll. Отметим, что именно бактериофаги — идеальный объект для таких исследований за счет высочайшей эффективности их размножения и простоты устройства!

Одна аминокислота белка кодируется тремя нуклеотидами ДНК. Представим себе участок ДНК как фразу, а каждый триплет нуклеотидов как трехбуквенное слово. Выпадение или вставка букв нарушает разбиение фразы на слова, но в некоторых случаях бессмысленной становится не вся фраза целиком, а только ее участок
Одна аминокислота белка кодируется тремя нуклеотидами ДНК. Представим себе участок ДНК как фразу, а каждый триплет нуклеотидов как трехбуквенное слово. Выпадение или вставка букв нарушает разбиение фразы на слова, но в некоторых случаях бессмысленной становится не вся фраза целиком, а только ее участок

Систему Бензера активно использовали другие ученые, в том числе для отмеченной Нобелевской премией работы по расшифровке генетического кода. Крик и Бреннер обнаружили, что акридиновые красители вызывают выпадение (обозначим как ←) и вставку (→) нуклеотидов. Выяснилось, что иногда, если в одном гене произойдет несколько мутаций, его работа может быть восстановлена. При этом у двойных мутантов →→ и ←← функция не восстанавливалась никогда. У мутантов →← и ←→ — довольно часто, особенно если мутации находились недалеко друг от друга по карте Бензера. У тройных мутантов восстановление происходило только в случае →→→ или ←←←, и также, только если все три мутации были расположены рядом. Такая ситуация возможна лишь при условии, что единицей кодирования будет триплет нуклеотидов (см. таблицу.). Эта работа стала блестящим экспериментальным доказательством постулата Георгия Антоновича Гамова, гласящего, что для кодирования двадцати аминокислот четырьмя нуклеотидами необходимо использовать именно триплеты.

Мы остановились только на самых фундаментальных открытиях в молекулярной биологии, сделанных в ходе экспериментов с бактериофагами. На самом деле примеров использования этих вирусов в качестве моделей и инструментов куда больше. В XX веке бактериофаги сыграли значительнейшую роль на первых этапах развития наших представлений об устройстве гена и принципах работы генетических систем, и это позволило ученым перейти к изучению более сложных организмов с большим числом генов и признаков. Кто знает, возможно, бактериофагам еще предстоит триумфальное возвращение в медицину XXI века, когда антибиотики станут бессильны.

Источник: "Химия и жизнь"

   

RV Host - Хостинг НАУЧНАЯ КОСМОЭНЕРГЕТИКА "РАССВЕТА СВАРОГА"
Академика О.П. Большаковой | www.cosmopetrov.ru